US009258112B2

a2z United States Patent (10) Patent No.: US 9,258,112 B2
Aggarwal et al. 45) Date of Patent: Feb. 9, 2016

(54) CONFIGURABLE KEY-BASED DATA 2013/0305114 Al* 112013 Olcayetal.ceeeee. 714/755
SHUFFLING AND ENCRYPTION 2014/0164866 Al* 6/2014 Bolotov etal. 714/758
2014/0237314 Al* 82014 Yangetal. ... 714/752

(71) Applicant: Accenture Global Services Limited,
Dublin (IE)
(72) Inventors: Vibhor Aggarwal, Karnataka (IN);
Sanjoy Paul, Karnataka (IN); Annervaz
Km, Kerala (IN); Amitabh Saxena,
Bangalore (IN)
(73) Assignee: ACCENTURE GLOBAL SERVICES
LIMITED, Dublin (IE)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 316 days.
(21) Appl. No.: 13/839,545
(22) Filed: Mar. 15,2013
(65) Prior Publication Data
US 2014/0270164 Al Sep. 18, 2014
(51) Imt.ClL
Ho4L 9/08 (2006.01)
(52) US.CL
CPC HO4L 9/0816 (2013.01); HO4L 9/0894
(2013.01)
(58) Field of Classification Search
CPC ..o HO04L 9/0816; HO4L 9/0894
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

2011/0202764 Al
2011/0270837 Al
2013/0246877 Al*

8/2011 Furukawa
11/2011 Raj et al.
9/2013 Zhangetal. 714/752

OTHER PUBLICATIONS

Syam Kumer P et al: “Ensuring data storage security in cloud com-
puting using Sobol Sequence”, Parallel Distributed and Grid Com-
puting (PDGC), 2010 1st International Conference on, IEEE,
Piscataway, NJ, USA, Oct. 28, 2010, pp. 217-222.

Shiyuan Wang et al: “A Comprehensive Framework for Secure Query
Processing on Relational Data in the Cloud”, Sep. 2, 2011, Secure
Data Management, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 52-69.

“The extended European search report” for European Patent Appli-
cation No. 14000923 4 dated Jul. 25, 2014, European Patent Office,
8 pages.

* cited by examiner

Primary Examiner — Joseph P Hirl
Assistant Examiner — Thomas Gyorfi
(74) Attorney, Agent, or Firm — Mannava & Kang, P.C.

57 ABSTRACT

A data shuffling and encryption system may include data
storage to store a key and a coding module to shuffle and
encrypt an input data sequence. The shuffling and encrypting
may include determining an n-dimensional space and popu-
lating the n-dimensional space with the input data sequence.
A quasi-random function may be applied to sample the n-di-
mensional space, and samples may be used as an index into
the n-dimensional space to determine an output data sequence
from the n-dimensional space.

20 Claims, 11 Drawing Sheets

Data Archiving System 150

" Enterprise i
Kppiication Serv]
L A

Archiving
Controller
155

i Archiving Policy]
Module |
156 ‘

5 |

[Enterprise L

Application Server
n

Data Shuffling and Encryption
System
100

Archiving Servers
151

US 9,258,112 B2

Sheet 1 of 11

Feb. 9, 2016

U.S. Patent

gl Old

/

Ol 1 eousnbag
ejeq indug

\||l|

001 waisAg
uopidAsous pue Buiiunys eleq

A

/ s/

\ 021 souenbag

A

VI Ol

0Z1 souanbag
gjeq indino

——

007 waisAs
uondAious pue Bulynysg eieq

\ ejeq indinQ

A

/e /

/ TIT siejaulesed

/ siqeinByuon

/ 0L} @ouanbsg

A

/ greq induj

US 9,258,112 B2

Sheet 2 of 11

Feb. 9, 2016

U.S. Patent

Ol Ol

eel
abelois eleq

Z< 1L Jaunbyuon Buipon

LEL IB)UNYD ejeq

0€L 8Inpoy Buipo)

001 waelsAg uondAiouz pue Buyynysg ejeq

US 9,258,112 B2

Sheet 3 of 11

Feb. 9, 2016

U.S. Patent

dal ol

LGl

sisAleg Bulalyoly

Ay)

o,
&t&xx %w
Q

\ VAY)

uondAioug

00T
wejsAg

pue Buiynys ejeq

961
SINPON
Aotjod Buiaiyousy

11
Jajjonuon
Buiniyosy

0G| weishg

Buiaiyoly ejeq

u
Janlag uones)ddy
asudisug

/\

L
JaAlsg uoneslddy
asudisiug

US 9,258,112 B2

Sheet 4 of 11

Feb. 9, 2016

U.S. Patent

¢ Ol

0le
8ousnbas ejep ndino 602
se|dwes psajelsaush

w m M * ¢ ‘ ¢ ¢ ; [’ ¢ ¢ ‘ ¢ ‘ ¢ £ £ 8
SIE18CI8[V|L]LE e e g 2o v e 41

uopouny
wopuel-isenb

Am.,a
20z @oeds [euoisuswIp | L 0Z ®ousnbas ejep indu
-U U pebuee 812196 A
souenbeselepindul | | ¢ | 7| | 8. 2,9, s/ vlglC|l
U C
{L'v} {1L'1}

§s8201d uopdAsoug pue Bulynys jo sjdwexg

US 9,258,112 B2

Sheet 5 of 11

Feb. 9, 2016

U.S. Patent

m Q\n\ L0z eouanbas eiep indui
{8°'2'9's'v'e'e L}
sousanbas pajynysap syl Hmm 0l aoeds _mco_mcmE_UAN“i o] 9zlleaulq .

ﬁww # w et {evt gt {eat (1w {ered L)
f: i {1y {zer {11}
T et
D ()

“sjuewiale jndul ay) Jo yoes JO sexepul sy} ainbyy 0} sejdwes pejessush
8y} pue sousnbes wopuel-isenb e Buisn soeds [euoisuswip-(z‘y) siyl s|dwes .

0l aouanbas eiep indino ‘
slelslzlolv]s]1
AN..v.v Suoisusip pue elep psjgynys HHJQC_ ®

$8800.4 uondAInsq pue Bulynys-aq 1o ajdwexy

US 9,258,112 B2

Sheet 6 of 11

Feb. 9, 2016

U.S. Patent

oLe
aousanbes eep ndino

v old

¢c|8i¥ L €9

uofouny
LopueJ-isenb

60¢
se|dwes psjelsush

Fr{eerfe v g
He 'zt {1 ‘v v ey {z 1}
{e b1 ety vtz el
gtz v e ek L1}

1L0Z @ouanbas ejep 1ndui

119 6 v ez L

9 G ¥ 8
X|9/6 ¥ e z11
Xleicll Sm
20¢ aoeds jeuoisusilip-u

aoeds jeuojsuawip-u

Buipped Ulipm $S80014 uopdAioum pue Bulynys jo sidwexs

US 9,258,112 B2

Sheet 7 of 11

Feb. 9, 2016

U.S. Patent

g Ol4

paddpjs ale saoipul esay]
{gehdreydevideer (il

F

Ac¢er {11}

A

{11}

L

o

LOE @oeds |euoisuawip gx¢ ajejndod

0} 60¢ ss|dwes 0} Buiploooe |og aoeds |Jeuoisuswip £XE 0} 0LE 8ouanbas
ejep jndino jo senjea dely "g0¢ sojdwes 196 0} Bulidwes wopuei-iseny) WIousd «

ole ‘ w
sousnbaseepindino |9 ¢ 8 ¥ L 1€ G |

Am_mv SuUQIsusWip pue elep psjiynys ”u:QC_ .

Buipped Ul $seo0id uondAioaq pue Buyynys-a(q jo ejdwexyg

U.S. Patent

Feb. 9, 2016 Sheet 8 of 11

00

receive an input data sequence
601

split the input data
sequence into chunks?

US 9,258,112 B2

602 NO

YES

determine total number of chunks and size of
gach chunk based on configurable parameters
603

Y

determine n-dimensional space
604

populate n-dimensional space with input data
sequence
605

of n-dimensional space
606

X S
generate samples from quasi-random sampling

4

samples used as indices into the n-dimensional
space to determine output data sequence
607

FIG.6

A

U.S. Patent

Feb. 9, 2016 Sheet 9 of 11

700

receive output data sequence
01

'

input data sequence

US 9,258,112 B2

chunked?
702 NO

YES

chunks decrypted and de-shuffled into initial
order
703

\

generate n-dimensional space based on key

A

704

A4

sample n-dimensional space according to
quasi-random function to generate samples
705

hd

use samples as indices to populate n-
dimensional space with values from output data
sequence
706

A\ 4

values in n-dimensional space are linearized to
generate input data sequence
707

FIG. 7

US 9,258,112 B2

Sheet 10 of 11

Feb. 9, 2016

U.S. Patent

8 'Ol
oTg 28 708
o/l 4OV4H3LNI JOVHOLS vivda
MHOML3N AIVANOO3S
- 808
| 00T waishs 208
i uondAious pue d0SS3I00dd
| Bulynys ejep
908
AHOWIIN
008

US 9,258,112 B2

Sheet 11 of 11

Feb. 9, 2016

U.S. Patent

6 Old

AlInoeg jo ealbe(

uoleziwAuouuy Ui

‘A1IN08g XeN

sSyuUNyYo
JO Jaguwinu auluIB}ap
0} juiod ajqeinblyuo)

}

w
!

|
Bumidg oN — Ajunoeg uin
‘uoneziwAuuouy xejp

uoneziwAuouuy jo saibaq

US 9,258,112 B2

1
CONFIGURABLE KEY-BASED DATA
SHUFFLING AND ENCRYPTION

BACKGROUND

Data security is becoming vital especially given the
increasing willingness of individuals to provide their confi-
dential information to other parties and the growing popular-
ity of shared data storage, such as on cloud computing sys-
tems. For example, it is not uncommon for a person to allow
an online retailer to store their credit card information or
agree to allow a social media site to use their information for
marketing or other reasons. To protect the individual, it is not
uncommon to anonymize the data and store the data in secure
data storage.

BRIEF DESCRIPTION OF DRAWINGS

The embodiments are described in detail in the following
description with reference to examples shown in the follow-
ing figures.

FIGS. 1A-B illustrates an example of a data shuffling and
encryption system.

FIG. 1C illustrates an example of a block diagram of a data
shuffling and encryption system.

FIG. 1D illustrates an example of the data shuffling and
encryption system in a data archiving system.

FIG. 2 illustrates an example of a process for data shuffling
and encryption.

FIG. 3 illustrates an example of a process for data shuffling
and encryption.

FIG. 4 illustrates an example of a process for data shuffling
and encryption with padding.

FIG. 5 illustrates an example of a process for data de-
shuftling and decryption with padding.

FIG. 6 illustrates an example of method for data shuffling
and encryption.

FIG. 7 illustrates an example of a method for data de-
shuftling and decryption with padding.

FIG. 8 illustrates an example of a computer system that
may be used for the methods and systems.

FIG. 9 shows an example of a graph illustrating an inverse
relationship between configurable parameters.

DETAILED DESCRIPTION OF EMBODIMENTS

For simplicity and illustrative purposes, the principles of
the embodiments are described by referring mainly to
examples thereof. In the following description, numerous
specific details are set forth in order to provide a thorough
understanding of the embodiments. It is apparent that the
embodiments may be practiced without limitation to all the
specific details. Also, the embodiments may be used together
in various combinations.

According to an embodiment, a data shuffling and encryp-
tion system uses multi-dimensional quasi-random sampling
for key-based data shuffling to generate an encrypted and
shuftled output data sequence. Two nearby elements in an
input data sequence provided to the data shuffling and encryp-
tion system may be far apart in the generated permutation that
is output from the data shuffling and encryption system as a
data sequence. The data shuftling and encryption system can
dynamically configure parameters to provide a degree of ano-
nymity and security based on user requirements.

The data shuffling and encryption system simultaneously
shuftles and encrypts input data. Encryption for example is a
process of encoding information in such a way that the infor-

15

25

35

40

45

55

2

mation cannot be understood unless it can be decrypted for
example with the required function and/or data, such as a key.
Shuffling may include shuffling elements in an input data
sequence so they are in a different order. According to an
embodiment, consecutive elements in an input data sequence
are shuffled so they are not next to each other in the output
data sequence and are encrypted because the input data
sequence cannot be determined from viewing the shuffled
output data sequence. The data shuffling and encryption
described herein is generally referred to as a shuffling and
encryption process because it achieves both shuffling and
encryption of an input data sequence. However, the shuffling
and encryption process performed according to one or more
embodiments described herein is a single process that
achieves both shuffling and encryption. Similarly, de-shuf-
fling and decryption is a single process that achieves both
de-shuffling and decryption. Also, the data shuffling and
encryption can shuffle and encrypt the whole input sequence
or splititinto chunks which can be individually permuted and
encrypted.

The shuffling and encryption may be key-based. The key
size may be independent of the length of the input sequence.

The data shuffling and encryption system can provide data
security and anonymity for a variety of applications. For
example, the system may be used for data storage, archiving
or any application whereby privacy and security of data is
desired.

FIGS. 1A-B show a data shuffling and encryption system
100 that may be used for data shuffling and encryption and
also for decryption and reverse shuftling referred to as de-
shuffling. For example, FIG. 1A shows an input data
sequence 110 which may be encrypted and shuffled by the
data shuffling and encryption system 100 to generate the
output data sequence 120 which is both encrypted and
shuftled. Configurable parameters 111 may be provided to the
data shuffling and encryption system 100 to set the level of
anonymity and security of the encrypted sequence 120. FIG.
1B shows that the output data sequence may be decrypted and
de-shuftled by the data shuffling and encryption system 100
to recreate the input data sequence 110. A key 113 is used for
the encryption and decryption processes as further described
below. The key 113 for example is any information used to
encrypt and shuffle the input data sequence 110 and which is
also needed to decrypt and de-shuffle the output data
sequence 120.

FIG. 1C shows a block diagram of the data shuffling and
encryption system 100. For example, coding module 130 may
perform the shuffling/de-shuftling and encryption/decryption
as further described below according to the processes and
methods described below. The data chunker 131 may segment
the input data sequence 110 into chunks for encryption and
shuffling. The coding configurer 132 implements the config-
urable parameters 111 to set the level of anonymity and secu-
rity for the encryption and shuffling. The data storage 133
may store information for the coding processes, such as the
configurable parameters 111 and the key 113 and any other
information that may be needed for the shuffling and encryp-
tion and the de-shuffling and decryption. The data storage 133
may comprise nonvolatile storage and may be secured to
prevent unauthorized access to a key. The components of the
data shuffling and encryption system 100 may include hard-
ware, software or a combination of hardware and software.

FIG. 1D shows an embodiment of using the data shuffling
and encryption system 100 in a data archiving system 150.
For example, the data archiving system 150 receives data
from the enterprise application servers 1-n which may
execute enterprise applications generating data which may

US 9,258,112 B2

3

need to be archived. The data archiving system 150 archives
the data on the archiving servers 151. The data archiving
system 150 may include an archiving controller 155 and an
archiving policy module 156. The archiving policy module
156 implements policies for archiving. The policies may indi-
cate what data needs to be archived and/or the policies may
indicate what data needs to be encrypted and shuftled by the
data shuffling and encryption system 100 before it is archived.
If the data is to be shuffled and encrypted, the archiving
controller 155 sends the data to the data shuffling and encryp-
tion system 100 and then the shuffled and encrypted data is
archived in the archiving servers 151. Archiving may include
storing the data or a version of the data in the archiving
servers. The archiving controller 155 may also be responsible
for restoring archived data as well as the archiving. If data is
to be restored, it is retrieved from the archiving server that is
storing it, and then may be decrypted and de-shuffled by the
data shuffling and encryption system 100 and sent to the
enterprise application server to which the data is being
restored. In one embodiment, the data shuftling and encryp-
tion system 100 may be provided in one or more of the
enterprise application servers 1-n so the data may be
encrypted and shuffled before it is sent to the data archiving
system 150.

FIG. 2 shows an example of encrypting and shuffling an
input data sequence that may be performed by the data shuf-
fling and encryption system 100. The input data sequence 201
shown in FIG. 2 is an example of the input data sequence 110
of FIG. 1. In the example in FIG. 2, the input data sequence
201 includes elements 1-8 in numerical order. For example,
element 1 is integer 1, element 2 is integer 2, etc. The elements
in an input data sequence may include other types of data,
such as strings, floating points, binary data, database records,
etc.

The input data sequence is arranged in an n-dimensional
space 202, whereby n>0. Each dimension in the n-dimen-
sional space may have the same length or different lengths.
The dimension lengths can be a power of 2 (e.g., 2%). In this
example, nis 4 by 2, e.g., 4x2. 2 is the number of rows and 4
is the number of columns. The value of n for example is the
key, such as key 113 shown in FIGS. 1A-B. The value of n for
example is the dimension lengths, such as 4x2.

The input data sequence is arranged into the n-dimensional
space 202 and a quasi-random sampling on the n-dimensional
space is performed to determine quasi-random samples 209.
For example, the coding module 130 shown in FIG. 1D may
include a quasi-random function that can generate a quasi-
random sequence from the key which is 4x2 in this example
to generate the samples 209. The generated samples 209
embody the shuffling provided by the coding module 130.

One example of a quasi-random function is the van der
Corput function which generates a van der Corput sequence.
A van der Corput sequence in base-b is generated by reversing
the digits of natural numbers when represented in the base b,
where b>=2. The van der Corput function was first published
in 1935 by the Dutch mathematician J. G. van der Corput.
Other quasi-random functions may be used. For example, a
quasi-random function determined by J. H. Halton may be
used. For example, a quasi-random Halton sequence may be
generated by selecting a base, such as base 2. Each element in
the input data sequence is converted to base 2, and the ele-
ments are reversed (e.g., 1.0 is reversed to 0.1), and converted
back to base 10. Other examples of quasi-random functions
are functions that generate a Sobol sequence or a Niederreiter
sequence.

Generating the indices according to the quasi-random
sequences is now further described. For example, a quasi-

10

15

20

25

30

35

40

45

50

55

60

65

4

random generator implementing a quasi-random function,
such as one of the functions described above, takes an index(i)
and the number of dimensions(d) and outputs the ith element
in the quasi-random sequence. This element is a d-dimen-
sional tuple with values usually between 0 and 1 for each
dimension. Assume the input to the quasi-random generator is
an n-dimensional space containing a total of m elements. The
generator is called m times, while feeding i=0to m-1 and d=n
to generate m n-dimensional tuples. Then the output values (a
number between 0 and 1) is scaled to find the exact index. For
example, a quasi-random output of {0.25, 0.5, 0.125} in a
3-dimensional space with lengths {4, 32, 16} is transformed
into the index {1, 16, 2}, i.e., {0.25%4, 0.5%32, 0.125*16}.
The generator always generates the same output values given
an index i and dimension d, assuming other parameters are
held constant. Other parameters consists of things like type of
quasi-random generator, such as Sobol, Halton, or Niederre-
iter, and the base employed for calculation, e.g., base 2, base
3, etc. Some quasi-random sequences can take more param-
eters as well for the generation of the sequences. In one
example, Sobol or Niederreiter sequences are used in base 2.

A property of these quasi-random functions for sampling
the n-dimensional space is that from the key, the samples 209
are generated. Thus, if the key is known, which is 4x2 in this
example, the same samples 209 can be generated every time
using the same quasi-random function and the same key.
Thus, the key and the quasi-random function are used to
generate the samples 209 for the shuffling and encryption
process, and the same key and the same quasi-random func-
tion are used to generate the same samples 209 for the de-
shuffling and decryption process.

In addition to the key 113, the type of quasi-random
sequence used as well as its associated parameters may be
stored in the data storage 133 and used for the decryption. For
example, multiple quasi-random sequences exist, each with
its own set of configurable parameters. For example, genera-
tion of a Sobol sequence is dependent upon direction numbers
and a primitive polynomial. If you change these, the output
sequence alters. Therefore, the type of quasi-random
sequence used as well as its associated parameters can be
stored for decryption and de-shuffling.

The generated samples 209 shown in FIG. 2 are used as a
set of coordinates (also referred to as indices) for determining
the elements for the output data sequence 210 from the n-di-
mensional space 202. For example, the coordinates are
applied to the n-dimensional space 202 to determine the val-
ues to include in the output data sequence 210. For example,
{1, 1} are x and y coordinates in the 2-dimensional space 202.
The value at the coordinates {1, 1} is 1. The value at the
coordinates {3, 2} is 7, and the other values for the output data
sequence 210 are determined by this process from each of the
samples 209. The output data sequence 210 may have no two
elements of the input data sequence 201 together. The output
data sequence 210 is shuffled and encrypted.

FIG. 3 shows an example of a de-shuffling and decrypting
process that may be performed by the data shuffling and
encryption system 100. One input to the data shuffling and
encryption system 100 is the output data sequence 210 gen-
erated in FIG. 2 and shown again in FIG. 3. The other input is
the key, which is 4x2 in this example, which are the dimen-
sion lengths of the n-dimensional space.

For decryption and de-shuffling, the quasi-random func-
tion implemented by the coding module 130 for the shuffling
and encryption is also applied to the key to determine the
samples 209. Each coordinate in the samples 209 is used to
place the corresponding element from the output data
sequence 210 in the n-dimensional space 202. For example,

US 9,258,112 B2

5

the first coordinate is {1, 1}. The first element of the output
data sequence 210 is 1 and thus 1 is placed in the coordinate
{1, 1} in the n-dimensional space 210. This process is
repeated for each element of the output data sequence 210
such as shown in FIG. 3 to populate the n-dimensional space
202 with the elements of the output data sequence 210 at the
corresponding coordinates. The populated n-dimensional
space 202 is then linearized to generate the input data
sequence 201. To linearize the populated n-dimensional
space 202, the order the elements were originally placed in
the n-dimensional space 202 is known from FIG. 2, and the
reverse order may be used to determine the input data
sequence 201 from the populated n-dimensional space 202
shown in FIG. 3.

To generate a much larger number of sequences, data can
be arranged in dimensions of arbitrary lengths. However, in
one embodiment the dimension lengths should be a power of
2 to ensure all indices are sampled by the quasi-random
sequence only once.

FIG. 4 shows a padding example whereby the input data
sequence 201 arranged in an n-dimensional space 301 having
dimension lengths 3x3. The empty coordinates of the n-di-
mensional space 301 are populated with padding value, such
as a default value, e.g., marked ‘X’. The n-dimensional space
301 is converted to an n-dimensional space 302 having
dimension lengths that are a power of 2, and the empty coor-
dinates of the n-dimensional space 302 are populated with the
padding value, which in this case is the bottom row and the
last column.

Then, similar to as shown and described with respect to
FIG. 2, the coding module 130 shown in FIG. 1D generates
samples 309 by applying the quasi-random function to the
key. The generated samples 309 embodies the shuffling. The
generated samples 309 are used as a set of coordinates for
determining the elements for the output data sequence 310
from the n-dimensional space 302. Thus, an n-dimensional
space (e.g., 302) with dimension lengths that are a power of 2
just greater than the initially created n-dimensional space
(e.g., 301) is sampled using the quasi-random sequence. For
example, the n-dimensional space 302 is 4x4, where 4 is the
next higher power of 2 from 3. Any power of 2 may be used.
Itdoes not need to be the next higher power of 2. For example,
an 8x4 space may be used. Any positions marked ‘X’ are
dropped in the output data sequence 310. For example, the
coordinates of the samples 309 are applied row-by-row to the
n-dimensional space 302 to determine the values for the out-
put data sequence 310. However, any coordinates containing
the padding value, shown as “X’, are not included in the
output sequence. So, in the first row of the samples 309,
values in the coordinates {3, 3}, {4, 2}, {2, 4} are not
included. In the second row, {4, 4} is skipped. In the third row,
13,4} and {4, 1} are skipped and in the fourth row, {4, 3} and
{1, 4} are skipped.

For the skipping, 3x3 is outside the range of the input data
sequence. For example, 3x3 means there are 9 elements but
the input data sequence 201 only has 8 elements so 3x3 is
skipped. 4x2 means that it is outside the 3x3 original dimen-
sions. So if any of the dimensions are greater than 3 or it is
more than the number of elements from the input data
sequence 201, then skip it.

For the padding described above, the cells at the end are
padded. However padding may be done at the front as well.
For example, instead of putting X in the {3, 3} cell, X may be
putin the {1, 1} cell and the rest of the elements may be filled
with the input data. However, the information on how the
padding has been done also needs to be stored in the key 113.
In a general case, there are three attributes for each dimension

40

45

60

6

of the n-dimensional space which are stored in the key 113
apart from the quasi-random generation information speci-
fied in the earlier point. First the length in which the data is
stored; second, the length which is sampled (e.g., a power of
2); and third, how the padding is done in that dimension.

Furthermore, different patterns of padding values may be
used to further secure the data, and the patterns are stored in
the key 113 so the output data sequence can be de-shuffled
and decrypted. For example, tables 1 A-C show examples of
patterns of padding values as follows:

TABLE 1A
(8x2)
X 1 X X 2 3 X 4
X 5 X X 6 7 X 8
TABLE 1B
(4x4)
X X 1 2
X 3 X 4
X X 5 6
X 7 X 8
TABLE 1C
(4x4)
X X X X
X X X X
1 2 3 4
5 6 7 8

The tables 1A-C show an input data sequence of 1-8, and
the padding value as X. The padding pattern can be as com-
plex as desired. The pattern is stored as part of the key 113 so
the pattern can be determined from the key 113 to determine
the location of the padding values.

FIG. 5 shows an example of the de-shuffling and decrypt-
ing process in the output data sequence 310 according to the
padding example shown in FIG. 4. The output data sequence
310 is now the input to the coding module 130 to determine
the samples 309. Then, to decrypt, the key, which is 3x3 in
this example is used. 3x3 is the dimensions of the original
n-dimensional space 301. Apply each coordinate in the
samples 309 to each of the values in the output data sequence
310 in order to map the values ofthe output data sequence 310
to the 3x3 dimensional space 301. For example, {1, 1} is the
first coordinate in the samples 309. {1, 1} is a coordinate in
the 3x3 space, so the first value in the output data sequence
310, which is 1, is populated at {1, 1} in the 3x3 dimensional
space 301. Coordinates may be dropped if they are not in the
3x3 dimensional space 301, such as coordinates {4, 2} and
{2, 4} or if the coordinates correspond to a padding value,
such as {3x3}, in the 3x3 dimensional space 301. So, as
shown in FIG. 5, the next value from the output data sequence
310 to be placed in the 3x3 dimensional space 301 is 5, and
the next coordinate in the samples 309 is {3, 3}. {3, 3}
corresponds to a padding value of the 3x3 dimensional space
301 as previously determined according to the padding shown
in FIG. 4 so the default value is placed at that coordinate
rather than the 5. Thus, {3, 3} is skipped and then {4, 2} and
{2, 4} are skipped because these coordinates are not in the
3x3 dimensional space 301. {2, 2} corresponds to a coordi-

US 9,258,112 B2

7

nate in the 3x3 dimensional space 301, so the 5 is placed at
this coordinate. This process is repeated for the remaining
values in the output data sequence 310 and for the remaining
coordinates in the samples 309. Then, the populated 3x3
dimensional space 301 is linearized to determine the input
data sequence 201.

Instead of encrypting and shuffling the entire sequence at
one time, the encrypting and shuffling may be performed on
chunks of the input sequence and then concatenated to form
the output data sequence.

For example, assume the input data sequence is 1-64. The
data chunker 131 may split the input data sequence into 8
chunks, e.g., chunks CO-C7. For example, CO has values 1-8,
C1 has values 9-16, etc. Each chunk is separately shuffled and
encrypted such as described in the shuffling and encrypting
processes described above to determine an output data
sequence for each chunk. The output data sequences for the
chunks may be concatenated for example in order of CO-C7to
determine an output data sequence. The data storage 133 can
store information for the chunking such as size of each chunk
and the number of chunks for example as part of the key 113,
which is used for de-shuffling and decryption. The size of
each chunk may vary. The number and size of each chunk
may be determined based on the configurable parameters 111,
such as a security parameter and an anonymity parameter as
describe below.

The system 100 may perform multi-level chunking. For
example, at a first chunking level in 2-level chunking, CO-C7
are first shuffled and encrypted. An example of the output data
sequence may be C3, C7, C0, C2, C6,C4, C1, C5. Then, ata
second chunking level, each chunk may be shuffled and
encrypted. To de-shuftle and decrypt, first the output data
sequence is de-shuftled and decrypted to get the sequence
C0-C7 from the sequence C3,C7,C0, C2,C6,C4,C1,C5 and
then each chunk is de-shuffled and decrypted. The chunking
and shuffling described here can be performed multiple times
on the input data for multi-level chunking.

The number and size of each chunk may be determined
based on the configurable parameters 111, such as a security
parameter and an anonymity parameter. Suppose the input
data sequence is n bytes long. The total number of permuta-
tions that can be generated for the output data sequence is n!
assuming there are no constraints. A permutation is a shuf-
fling of the input data, so the number of shuffled sequences
that can be generated is n!. Suppose under a particular shuf-
fling scheme which may use chunking, X out of n! permuta-
tions are possible to get generated. The number of permuta-
tions X may be less than n! also because of constraints, such
as that no two values of the input data sequence can be next to
each other or that the input values must be a certain distance
apart. The security parameter for example is defined as d=X/
n!. The value of d may be a user input.

Another parameter is the anonymity parameter. Suppose
the input data sequence is n bytes long. The total number of
permutations possible if we use quasi-random shuffling with-
out any splitting is 2" where 2"=n. Suppose under a par-
ticular shuffling scheme using chunking and combining, X
out of all n! permutations are possible to get generated. The
anonymity parameter for example is defined as (2¢~")/X.

The security parameter is X/n! and the anonymity param-
eteris (29)/X, where X is the total number of permutations
possible in the quasi-random shuffling and encryption pro-
cess and 2"=n. The value of the security parameter is between
(2“"y/n! and 1. The lowest security case is when typical
quasi-random shuffling without any chunking is used. The
highest security case is when chunking is used and n! shuf-

10

15

20

25

30

35

40

45

50

55

60

65

8

flings are possible. The actual possibility of this depends on
the underlying quasi-random function used and may not be
realizable.

The value of the anonymity parameter is also between
(2"Y)y/n! and 1. The lowest case is when chunking is used,
where all of n! shufflings are possible. The highest case is
when a typical quasi-random function is used without any
chunking. There is an inverse relationship between security
and anonymity so the values of the anonymity and security
parameters may be selected to balance between security and
anonymity. FIG. 9 shows a graph illustrating the inverse rela-
tionship between the parameters and a point may be selected
on the graph to balance between security and anonymity and
to determine the number of chunks.

Different industry domains (e.g., finance, healthcare,
media, etc.) may have different requirements for privacy and/
or confidentiality. Default parameters can be stored and used
for those domains. Applications within a given domain could
also have different requirements and hence could play a role
in determining the parameters as well. Furthermore, different
parameters may be used for different services or business
relationships. For example, a service provider may provide
more confidentiality or more anonymity for platinum custom-
ers versus gold and silver customers.

As shown in FIG. 10, the data shuffling and encryption
system 100 may include a coding module 130. The coding
module 130 for example performs coding which includes
shuftling and encryption and de-shuftling and decryption as
described herein. FIG. 6 illustrates a method 600 according to
an embodiment for coding including shuffling and encryp-
tion. FIG. 7 illustrates a method 700 according to an embodi-
ment for coding including de-shuftling and decryption. The
methods 600 and 700 may be performed by the system 100
including the coding module 130 by way of example. The
methods may be performed by other systems.

At 601 of the method 600, the system 100 receives an input
data sequence. An input data sequence may include a
sequence of values such as shown in the input data sequence
201. The input data sequence may be a sequence of bytes
representing values.

At 602, the system 100 determines whether to split the
input data sequence into chunks. For example, the coding
configurer 132 may receive one or more configurable param-
eters 113 from a user or another system. The configurable
parameters 113 may include a security parameter and/or an
anonymity parameter such as described above. The security
parameter may be d=X/n! as described above. The anonymity
parameter may be a=(2“"")/X as described above. A total
number of chunks and a size of each chunk may be deter-
mined from the configurable parameters 113 at 603 for split-
ting the input data sequence into chunks.

At 604, an n-dimensional space is determined. The value of
nis stored as part of the key 113. For example if n is 2x2, then
2x2 is stored in the key 113. n may be determined at random
or based on other parameters. The length of each dimension
should be a power of 2. If not, a new dimensional space is
determined wherein a length may be changed to a higher
power of 2. For example, if a 3x3 space is changed to a 4x4
space with padding as shown in FIGS. 4 and 5. The key and
the number of chunks and each chunk size, which may be the
same or different for each chunk, may be stored in the data
storage 133. Also, padding may be performed at 604 such as
described above. Empty cells in an n-dimensional space may
be padded. In one example, such as described in FIG. 4, an
n-dimensional space is converted to an n-dimensional space
having dimension lengths that are a power of 2 and padding
values are added to empty cells. Padding values may be added

US 9,258,112 B2

9

in patterns such as described above. Three attributes may be
stored for the key 113 for each dimension of the n-dimen-
sional space, such as the length in which the data is stored, the
length which is sampled (e.g., a power of 2), and how the
padding done in that dimension.

At 605, the n-dimensional space is populated with the
values of the input data sequence, for example as shown in
FIGS. 2 and 4. If the input data sequence is split into chunks,
then values for each chunk are populated into their own n-di-
mensional space.

At 606, a quasi-random function is applied to the populated
n-dimensional space to generate samples from the quasi-
random sampling of the n-dimensional space. All the param-
eters specifying the quasi-random sampling are stored as part
of'the key 113. If the input data sequence is split into chunks,
the quasi-random function is applied to the populated n-di-
mensional space for each chunk.

At 607, the samples are used as indices into the n-dimen-
sional space to determine the output data sequence. For
example, as shown in FIGS. 2 and 4, the samples are coordi-
nates, and the values at the coordinates in the n-dimensional
space form the output data sequence. If the input data
sequence was chunked, an output data sequence may be deter-
mined for each chunk and the output data sequences for the
chunks may be concatenated to determine a final output data
sequence.

The output data sequence may satisty the constraint that no
two elements from the input data sequence are next to each
other in the output data sequence. Also, multi-level shuffling
and encryption may be performed at 604.

For example, assume 2-level shuftling is to be performed.
Chunks may be shuffled and encrypted at the chunk level. For
example, start with 8 chunks C0O-C7.CO0,C1 ...C7is theinput
data sequence. The chunks are shuffled and encrypted
through the process described above to get an output data
sequence, such as C3, C7, C0O, C2, C6, C4, C1, CS5. Then,
shuffling can be done within each chunk. Any number of
levels of shuffling may be performed.

FIG. 7 illustrates the method 700 for coding including
de-shuftling and decryption. At 701, the output data sequence
is received to de-shuffle and decrypt it to generate the input
data sequence. The key is also determined, such as retrieved
from storage. If the input data sequence was chunked, the
number of chunks and size of each chunk is also determined,
such as retrieved from storage.

At 702, a determination is made as to whether the input
data sequence was split into chunks and shuffled and
encrypted, such as described above with respect to multi-level
shuffling. If it was, then the chunks are decrypted and de-
shuftled so they are in the correct order at 703. For example,
as described above, the input data sequence may include
chunks C0-C7 that were shuffled to a different order, such as
C3, C7, CO, C2, C6, C4, C1, CS5 through the shuffling and
encryption process. At 703, the chunks are de-shuffled and
decrypted to their initial order of CO-C7 based on information
in the key at 703.

At 704, the n-dimensional space is generated based on the
key. For example, the key indicates the length for each dimen-
sion, such as 2x2 or 3x3. The n-dimensional space is gener-
ated for each chunk if the input data sequence was chunked.
At 705, the n-dimensional space is sampled according to the
quasi-random function using the quasi-random function
attributes from the key to generate the samples, such as the
samples 209 or 309 shown in FIGS. 3 and 5. If the input data
sequence was chunked, then samples are generated for each
chunk.

10

15

20

25

30

35

40

45

50

55

60

65

10

At 706, the output data sequence is transformed to the input
data sequence for example by using the samples as indices to
populate the n-dimensional space with values from the output
data sequence such as shown in FIGS. 3 and 5. If the input
data sequence was chunked, then values from each chunk are
populated to their corresponding n-dimensional space and
their corresponding samples. The information in the key may
indicate if padding was done for the encryption and shuffling.
If padding was done, then the padded value locations are
determined from the key so the values from the output data
sequence are populated into the correct cells in the n-dimen-
sional space such as described in FIG. 5.

At707, the values in the populated n-dimensional space are
linearized to generate the input data sequence. If the input
data sequence was split into chunks then the output data
sequence for each chunk is transformed to the input data
sequence and may be concatenated to form the input data
sequence. If multi-level chunking and shuffling and encryp-
tion were performed, then first the output data sequence, e.g.,
C3,C7,C0,C2,C6,C4,C1,CS, is de-shuffled and decrypted
such as described at 702 and 703 to CO-C7, and then each
chunk CO-C7 may be de-shuffled and decrypted to determine
the input data sequence such as described at 704-707. The
steps of de-shuffling and decrypting the chunks into the initial
order CO-C7 at 702 and 703 are not described above but may
be similar to the steps described at 704-707.

FIG. 8 shows a computer system 800 that may be used with
the embodiments and examples described herein. The com-
puter system 800 includes components that may be in a server
or another computer system. The computer system 800 may
execute, by one or more processors or other hardware pro-
cessing circuits, the methods, functions and other processes
described herein. These methods, functions and other pro-
cesses may be embodied as machine readable instructions
stored on computer readable medium, which may be non-
transitory, such as hardware storage devices (e.g., RAM (ran-
dom access memory), ROM (read only memory), EPROM
(erasable, programmable ROM), EEPROM (electrically eras-
able, programmable ROM), hard drives, and flash memory).

The computer system 800 includes at least one processor
802 that may implement or execute machine readable instruc-
tions performing some or all of the methods, functions and
other processes described herein. Commands and data from
the processor 802 are communicated over a communication
bus 808. The computer system 800 also includes a main
memory 806, such as a random access memory (RAM),
where the machine readable instructions and data for the
processor 802 may reside during runtime, and secondary data
storage 807, which may be non-volatile and stores machine
readable instructions and data. For example, machine read-
able instructions for the data shuffling and encryption system
100 may reside in the memory 806 during runtime. The
memory 806 and secondary data storage 807 are examples of
computer readable mediums.

The computer system 800 may include an /O device 810,
such as a keyboard, a mouse, a display, etc. For example, the
1/0 device 810 includes a display to display drill down views
and other information described herein. The computer system
800 may include a network interface 812 for connecting to a
network. Other known electronic components may be added
or substituted in the computer system 800. Also, the data
shuftling and encryption system 100 may be implemented in
a distributed computing environment, such as a cloud system.

While the embodiments have been described with refer-
ence to examples, various modifications to the described
embodiments may be made without departing from the scope
of the claimed embodiments.

US 9,258,112 B2

11

What is claimed is:

1. A data shuffling and encryption system comprising:

a processor;

a data storage to store a key; and

a non-transitory computer readable storage medium stor-

ing instructions to be executed by the processor to cause
the processor to:

shuftle and encrypt an input data sequence, wherein the

input data sequence is received from a server; and

transmit the shuffled and encrypted data to another server,

wherein the shuffling and encrypting includes:

determining an n-dimensional space based on the key,
wherein n>0, and the key indicates a size of the n-di-
mensional space;

populating the n-dimensional space with data from the
input data sequence in a sequence order that the data
appears in the input data sequence;

applying a quasi-random function to sample the data
populated in the n-dimensional space to transform the
data in the n-dimensional space into a sequence of
quasi-random samples, wherein each quasi-random
sample includes a coordinate corresponding to a posi-
tion of the sampled data in the n-dimensional space;

using the coordinates included in the quasi-random
samples as an index into the n-dimensional space to
obtain the data from the n-dimensional space; and

placing the data obtained from the n-dimensional space
in an order of the sequence of the quasi-random
samples to generate an output data sequence.

2. The data shuffling and encryption system of claim 1,
wherein the instructions further cause the processor to:

segment the input data sequence into chunks; and

shuftle and encrypt each of the chunks to determine an

output data sequence for each chunk, and concatenate
the output data sequences for the chunks to generate the
output data sequence.

3. The data shuffling and encryption system of claim 2,
wherein the instructions further cause the processor to:

determine a number of the chunks and a size of each chunk

based on at least one of a security parameter and an
anonymity parameter.

4. The data shuffling and encryption system of claim 3,
wherein at least one of the security parameter and the ano-
nymity parameter is received as a user input, and at least one
of the security parameter and the anonymity parameter is
determined based on a total number of desired permutations
of the concatenated output data sequence.

5. The data shuffling and encryption system of claim 1,
wherein the instructions further cause the processor to de-
shuftle and decrypt the output data sequence based on the key.

6. The data shuffling and encryption system of claim 5,
wherein the processor is to de-shuffle and decrypt the output
data sequence by applying the quasi-random function to the
key to determine the quasi-random samples, populating the
n-dimensional space with values from the output data
sequence based on the quasi-random samples, and linearizing
the values in the n-dimensional space to determine the input
data sequence.

7. The data shuffling an encryption system of claim 1,
wherein to populate the n-dimensional space with the input
data sequence, the processor is to include padded values in the
n-dimensional space, and store information describing loca-
tions of the padded values in the n-dimensional values as part
of the key.

8. The data shuffling and encryption system of claim 7,
wherein the locations of the padded values are a pattern.

10

15

20

25

30

40

45

50

60

65

12

9. The data shuffling and encryption system of claim 7,
wherein the processor is to de-shuffle and decrypt the output
data sequence using the key by applying the quasi-random
function to the key to determine the quasi-random samples,
populating the n-dimensional space with values from the
output data sequence based on the quasi-random samples, and
linearizing the values in the n-dimensional space to determine
the input data sequence,

wherein to populate the n-dimensional space for the de-

shuffling and the decrypting, the processor is to deter-
mine if any of the values populated in the n-dimensional
space from the shuffling and the encrypting are padded
values based on the information describing the locations
of the padded values in the key, and

if any of the values are padded values, skip the quasi-

random samples corresponding to the padded values
when performing the populating of the n-dimensional
space during the de-shuffling and the decrypting.

10. The data shuffling an encryption system of claim 1,
wherein the key includes information identitying a type of
quasi-random sequence generated by the quasi-random func-
tion and associated parameters for the type of the quasi-
random sequence.

11. A method of coding an input data sequence comprising:

receiving an input data sequence from a server; and

shuffling and encrypting the input data sequence, wherein

the shuffling and encrypting includes:

determining an n-dimensional space wherein n>0;

populating the n-dimensional space with data from the
input data sequence in a sequence order that the data
appears in the input data sequence;

applying, by a processor, a quasi-random function to
sample the data populated in the n-dimensional space
to transform the data in the n-dimensional space into
a sequence of quasi-random samples, wherein each
quasi-random sample includes a coordinate corre-
sponding to a position of the sampled data in the
n-dimensional space;

using the coordinates included in the quasi-random
samples as an index into the n-dimensional space to
obtain the data from the n-dimensional space; and

placing the data obtained from the n-dimensional space
in an order of the sequence of the quasi-random
samples to generate an output data sequence; and
transmitting the output data sequence to another
server.

12. The method of claim 11, comprising:

segmenting the input data sequence into chunks; and

shuffling and encrypting each of the chunks to determine

an output data sequence for each chunk; and
concatenating the output data sequences for the chunks to
generate the output data sequence.

13. The method of claim 12, wherein a number of the
chunks and a size of each chunk is determined based on a
security parameter and an anonymity parameter.

14. The method of claim 13, wherein at least one of the
security parameter and the anonymity parameter is deter-
mined based on a total number of desired permutations of the
concatenated output data sequence.

15. The method of claim 12, comprising:

shuffling and encrypting all the chunks to determine an

output set of chunks prior to the shuffling and encrypting
each of the chunks to determine the output data sequence
for each chunk.

16. The method of claim 11, comprising:

padding the n-dimensional space with padded values,

wherein information describing locations for the padded

US 9,258,112 B2

13

values in the n-dimensional space is stored as part of a
key to be used for de-shuffling and decrypting the output
data sequence.

17. The method of claim 16, wherein the padding com-
prises increasing the n-dimensional space, wherein lengths of
the dimensions are increased to a higher power of 2.

18. The method of claim 11, comprising:

de-shuftling and decrypting the output data sequence based

on a key, wherein the key includes a value of n for the

n-dimensional space and the de-shuffling and the

decrypting comprises:

applying the quasi-random function to the output data
sequence to determine the quasi-random samples;

populating the n-dimensional space with values from the
output data sequence based on the quasi-random
samples; and

linearizing the values in the n-dimensional space to
determine the input data sequence.

19. The method of claim 18, wherein the populating of the
n-dimensional space with the values from the output data
sequence based on the quasi-random samples comprises:

determining if any of the values populated in the n-dimen-

sional space from the shuffling and the encrypting are
padded values based on information in the key describ-
ing locations of any padded values in then-dimensional
space; and

5

10

15

14

ifany of the values are padded values, skipping the samples
corresponding to the padded values when performing
the populating of the n-dimensional space during the
de-shuffling and the decrypting.

20. A non-transitory computer readable medium including
machine readable instructions that are executable by at least
one processor to:

receive an input data sequence from a server;

determine an n-dimensional space wherein n>0;

populate the n-dimensional space with data from the input

data sequence in a sequence order that the data appears
in the input data sequence;

apply a quasi-random function to sample the data in the

n-dimensional space to transform the data in the n-di-
mensional space into a sequence of quasi-random
samples, wherein each quasi-random sample includes a
coordinate corresponding to a position of the sampled
data in the n-dimensional space;

use the coordinates included in the quasi-random samples

as an index into the n-dimensional space to obtain the
data from the n-dimensional space;

place the data obtained from the n-dimensional space in an

order of the sequence of the quasi-random samples to
generate an output data sequence; and

transmit the output data sequence to another server.

#* #* #* #* #*

